

Radiolabeling and imaging approaches for carbon-based nanohybrids

Antonis Skliris

Nanohybrides 18 – Bastia May-June 2022

Who we are?

BIOEMTECH is a SME who develops and offers innovative solutions in medical and pharmaceutical research in the **non-invasive** *in vivo* imaging.

We focus on molecular imaging and biomedical engineering:

- ✓ Design and construction of low-cost benchtop imaging devices
- ✓ Performance of preclinical imaging services in our imaging platform
- ✓ Computational simulations using Monte Carlo techniques

BIOEMTECH Labs

OBIOEMTECH

➤ R&D labs at the Technology Park "**Lefkippos**" in **NCSR Demokritos** since 2017.

In-vitro Lab

In vitro testing (targeting, cytotoxicity, etc.)

Radiochemistry Lab

Radiolabeling of compounds & QC

Animal Hosting

Mouse models (oncology, etc.)

In-vivo Imaging Lab

2D/3D, static or dynamic PET/SPECT/CT imaging

Nanotechnology

Nanoparticles

Structures where AT LEAST one dimension is between 1 and 100 nm (sometimes may be bigger)

Nanoscale

• Human: 1,800,000,000 nm

Insect: 1,000,000 nm

• Hair: ~ 10,000 nm

Blood cell: 8,000 nm

• Bacteria: eColi 2,000 nm

• Virus: 100 nm

Protein: ~1-20 nm

Molecule: ~1nm

Hydrogen atom: 0.04 nm

Multifunctional nanomaterials

- Selected tumor/organ targeting;
- Low drug concentration in normal tissues
- Controlled drug release in target tumor/organ
- Minimization of side effects due to lower dose and targeted delivery

BIOEMTECH Labs

Radiolabeling of compounds & QC

Labelling approaches

Metallic Isotopes: Use of precursors that chelate the radiometal, transmetallation reactions *Non-metallic isotopes:* Use of organic chemistry reactions (SN, SN_2 , SN_{Ar} , click reactions)

Radiolabelling approaches

CNHs

Pre-radiolabeling

Direct radiolabeling (no chelator)

perform QC

Reform QC

Calculation of the conversion co

Stockhofe et al. Pharmaceuticals 2014; 7, 392-418

Types of radioisotopes

Long lived isotopes and Short lived isotopes

In medicine we usually use short-lived isotopes

Metallic radioisotopes and non metallic radioisotopes

ex. Metallic: technetium-99m gallium-68, copper-64 and zirconium-89; Non-metallic: carbon-11, fluorine-18

Radioisotopes that can be used in therapy

The Clock-Of-Nuclides showing the diagnostic (gamma, positron) and therapeutic (beta, auger and alpha) emitters used for radiolabeling NCs. At noon with the shortest physical half-life and ending with the longest physical half-life.

Analytical techniques

QC of radiolabeled CNHs

to ensure necessary chemical functionalization of the NHs for their successful in-vivo introduction

Radiolabeling of different carbon nanohybrids (CNHs) received from the partners with [68Ga]Ga(III) for PET imaging.

Nanomaterials tested				
CFO	carbon fluorooxide			
CD3011	carbon nanodots			
CDF19	carbon nanodots			
S2	carbon nanodots			

Whatman 3 MM, 0.1M EDTA

QC of radiolabeled CNHs Radiochemical conversion (RCC)

QC of radiolabeled CNHs Radiochemical conversion (RCC)

QC of radiolabeled CNHs Radiochemical conversion

Findings

- Radiochemical conversion up to ~54% (for S2)
- ➤ Low radiochemical conversion for the other CNHs (~3% 15.5%)
- CNH dilution buffer & amount of CNHs affect radiolabeling

What is needed

- Optimization of the [68Ga]GaCl₃ label protocol (pH, buffer ect.)
- ➤ Label nanomaterials with [¹¹¹In]InCl₃ for SPECT imaging

Next step

Perform kinetics stability (temperatures, buffers)

QC of radiolabeled CNHs Kinetic Stability Assays

Aliquots of the reaction mixture were taken and incubated at different temperatures and different solvents

Radio-TLCs were taken at 1hr, 4 hrs and 24hrs post preparation.

Comparative diagram probing the potential *in vivo* stability of the **radiolabeled-NHs** at three time points post-preparation (p.p.) under various incubation conditions (PBS, EDTA, Plasma).

What's next

If:

- RCC ≤ 95%
- Low stability over time

Then:

Return to nanomaterial preparation to improve characteristics and performance

- RCC ≥ 95%
- Stable over time

In vivo administration

- Imaging studies
- Biodistribution studies

Our Imaging Platform

Small animal imaging

- In vivo ≠ In vitro
- Non-destructive. Repeated studies in the same animal
- Each animal serves as its own control
- We can efficiently image the entire animal simultaneously
- Imaging bridges the gap from cell to human studies
- Many potential targets
- A large variety of imaging techniques available

A Molecular Imaging Primer: Modalities, Imaging Agents, and Applications, Michelle L. James and Sanjiv S. Gambhir, Physiological Reviews, Vol. 92, No. 2, 01 Apr 2012.

Imaging modalities

Imaging modalities

SPECT is among the most sensitive of the molecular *in vivo* imaging technologies and its spatial scale spans the resolution required for imaging small laboratory animals and the depth penetration required for imaging humans.

Comparison of imaging technologies OEMTECH

Technique	Resolution	Sensitivity	Depth	Time
MRI	10-100µm	µ-mMol	No limit	Min
СТ	50µm	m-cMol	No limit	Sec
US	<50µm	mMol	mm	Sec
PET	1-2mm	p-nMol	No limit	Min
SPET	< 1mm	p-nMol	No limit	Min
FRI	1-2mm	p-nMol	< 1cm	Sec
FMT	1-2mm	p-nMol	< 10cm	Sec

Questions for in vivo imaging

In-vivo imaging provides an answer to the following questions:

- ✓ Do nanoparticles reach the target?
- ✓ Are they concentrated in other organs/tissues?
- ✓ How long do they remain on the target?
- ✓ How long do they stay in blood circulation?
- ✓ Are they stable post injection?
- ✓ What happens at the first minutes post injection?
- ✓ What is the best injected concentration?
- ✓ How shall we prepare the animals?
- ✓ When is the highest concentration in target?
- ✓ When is the best time point for tomographic imaging?
- ✓ When is the best time for biodistribution points?
- ✓ Which is the best injection route?

NPs and targeting

Assesment of **tumor targeting** does <u>not</u> need **tomographic imaging** for preliminary assessment

No concentration on tumor

Good concentration on tumor

Low concentration on tumor

High concentration on tumor

Different administration routes• BIOEMTECH

Optimize protocol parameters

Different concentrations

[99mTc]Tc-MIBI 100uCi almost no heart signal

[^{99m}Tc]Tc-MIBI 2mCi noticeable heart signal

Different preparation conditions

[99mTc]Tc-MDP after water fasting Bones clearly visible

[99mTc]Tc-MDP under normal feeding conditions – need to "burn" image to see the bones

Identify unsuccessful tests

- Image <u>all</u> mice that will participate in a biodistribution study before dissection
- Bad injections can be identified and excluded to improve statistics
- Aggregations or other unexpected concentrations are visible
- Animals with obvious "errors" are excluded from biodistributions

Reduction of animals

Scan the same mouse easily and fast over multiple time points, with frames down to few seconds. Full bio distribution data with one animal

Nanoparticles Biodistribution

Magnetic Nanoparticles

100uCi of [^{99m}Tc]Tc-MDP in 100ul - 400μg FeCaP 20 min acquisition

Selenium Nanoparticles

[99mTc]Tc-PLGA/SeNp 100 ul with 100 uCi 20 min acquisition

Gold Nanoparticles

[68Ga] Gold nanoparticles 100 ul with 10 uCi 10 min acquisition

Liposome Nanoparticles

U-87MG mouse, 100 μCi of [99mTc]Tc-NT Lipo-Cys 20 min acquisition

Silver Nanoparticles

U87MG mouse, Ag^{99m}Tc (100 μCi)
20 min acquisition

Imaging examples of nanoparticles **©BIOEMTECH**

Nanoparticles

- Dynamic imaging of silver NPs
- ii. SPECT imaging of magnetic NPs
- CT imaging of iii. gold NPs

Indicative preclinical studies

Tumor imaging

Contrast agents

Bone imaging

Cardiac imaging

Nanoparticle imaging

Lung imaging

Imaging examples (I): Oncology

Tumor imaging

Tumor bearing mouse i.v. injected with 100 uL. 1mCi [99mTc]Tc-peptide:

- i. Dynamic imaging for the first 2 hrs p.i.
- ii. 3D SPECT imaging @ 4 hrs p.i.

Imaging examples (II): Lungs

Lung imaging

Normal mouse and intratracheal administration:

- a) Dynamic imaging: 1 hr p.i.
- b) Imaging @ 1 hrs p.i.

Molecular Screening Applications OBIOEMTECH

Conclusions

- Radiolabeling of the nanoparticles may be tricky
 - There are lot of parameters to be taken into consideration.
- Imaging technologies are powerful tools for evaluating the biodistribution of different nanoparticles.
 - They provide unique non invasive tools for repeated studies over time
- It is important to understand the advantages of each imaging technology as well as the properties of different nanoparticles

Our team...

Team includes

- Biomedical Engineers
- Mechanical Engineers
- Physicists
- Biologists
- Radiochemists
- > Software Developer
- > Software Engineer
- Project Management

Thank you for your attention

